[1]杨耘,王彬泽,刘艳,等.基于时空优化LSTM深度学习网络的气温预测[J].徐州工程学院学报(自然科学版),2020,(02):44-49.
 YANG Yun,WANG Binze,LIU Yan,et al.Air Temperature Prediction Based on the OptimizedSpatiotemporal LSTM Deep Learning Network[J].Journal of Xuzhou Institute of Technology(Natural Sciences Edition),2020,(02):44-49.
点击复制

基于时空优化LSTM深度学习网络的气温预测()
分享到:

《徐州工程学院学报》(自然科学版)[ISSN:1674-358X/CN:32-1789/N]

卷:
期数:
2020年02期
页码:
44-49
栏目:
工程技术
出版日期:
2020-07-04

文章信息/Info

Title:
Air Temperature Prediction Based on the OptimizedSpatiotemporal LSTM Deep Learning Network
文章编号:
1674-358X(2020)02-0044-06
作者:
杨耘12王彬泽1刘艳3席江波12柏涵1王丽霞1吴田军1
(1.长安大学 地质工程与测绘学院,陕西 西安710054; 2.地理信息工程国家重点实验室长安大学合作部,陕西 西安710054; 3.中国气象局乌鲁木齐沙漠气象研究所,新疆 乌鲁木齐830002)
Author(s):
YANG Yun12WANG Binze1LIU Yan3XI Jiangbo12BAI Han1WANG Lixia1WU Tianjun1
(1.College of Geology Engineering and Surveying,Chang’an University,Xi’an 710054,China; 2.Department of Cooperation of Chang’an University of State Key Laboratory of Geographic Information Engineering,Xi’an 710054,China; 3.Urumqi Institute of Desert Meteo
关键词:
长短时记忆(LSTM) 深度学习 气温 时空预测 玛纳斯河流域
Keywords:
long and short term memory(LSTM) deep learning temperature spatiotemporal prediction Manas River Basin
分类号:
P457.3
文献标志码:
A
摘要:
新疆天山山脉中段玛纳斯河流域及其周边地区气象观测站点稀疏且分布不均匀,导致对该地区积雪-融雪过程模拟所需的气温要素时空预测精度不高.针对这一问题,提出了基于时空优化长短时记忆(LSTM)深度网络的气温时空精准预测模型.首先,以该地区21个气象观测站点上2015年全年小时气象数据为数据源,利用Pearson相关性分析及多重共线性检验法选取了经度、纬度、风速、地表温度、相对湿度相关性较强的5个特征.其次,引入LSTM深度学习模型对气温等四个气象要素时间序列进行建模及预测,再引入后向传播(BP)神经网络对气象要素值进行优化并实现了将来逐小时气温的精准预测.最后,通过克里金插值(Kriging)制作了未来小时研究区气温空间分布图.对LSTM-BP模型预测精度进行分析,结果表明在研究区观测站点稀疏且分布不均匀情况下,利用提出的BP-LSTM模型预测的小时气温的均方根误差(RMSE)为2.37 ℃,比单独的LSTM模型降低2.21 ℃, 比 LSTM与多元线性回归组合模型降低0.3 ℃.LSTM-BP组合网络预测的绝对平均误差(MAE)也有所降低.对预测后的气温空间分布情况分析结果进一步验证了该模型的时空预测结果与实际情况一致.
Abstract:
The meteorological observation stations in the Manas River Basin and its surrounding areas in the middle section of the Tianshan Mountains in Xinjiang are sparse and unevenly distributed,resulting in low accuracy of spatial-temporal prediction of temperature elements required for the simulation of snow-melt processes in this area.To solve this problem,a spatiotemporal accurate prediction model based on LSTM deep learning network is proposed.Firstly,taking the hourly meteorological data of 2015 from 21 meteorological observation stations in the region as the data source.Pearson correlation analysis and multicollinearity test method are used to select 5 features with strong correlation such as longitude,latitude,wind speed,surface temperature and relative humidity.Secondly,LSTM deep learning model is introduced to this model and predict the time series of four meteorological elements such as air temperature etc.,and back propagation(BP)neural network is introduced to optimize the value of meteorological elements and realize accurate prediction of hourly air temperature in the future.Finally,the spatial distribution map of air temperature in the study area in the coming hours is made by Kriging interpolation.The results from prediction accuracy analysis of LSTM-BP model showed that:the mean square error(RMSE)of air temperature prediction of the LSTM-BP network calculated is 2.37 ℃,which is 2.21 ℃ lower than that of the LSTM alone,and 0.3 ℃ lower than that of the combination of LSTM and multiple linear regression model.The absolute mean error(MAE)of LSTM-BP combined network prediction is also reduced.In addition,the analysis results of the predicted air temperature spatial distribution further verify that the spatiotemporal prediction results of this model are consistent with the actual situation.

参考文献/References:

[1] 冯蜀青,王海娥,柳艳香,等.西北地区未来10 a气候变化趋势模拟预测研究[J].干旱气象,2019,37(4):557-564.
[2] 朱晶晶,赵小平,吴胜安,等.基于支持向量机的海南气温预测模型研究[J].海南大学学报(自然科学版),2016(1):40-44.
[3] 张禄,杨志军.基于神经网络和主分量的日极值气温预测方法
[C].北京:第33届中国气象学会年会.2016.
[4] 王定成,曹智丽,陈北京,等.日气温多元时间序列局部支持向量回归预测[J].系统仿真学报,2016,28(3):160-166.
[5] 金丽娜.西安近10年植被覆盖变化及其与气候因子的相关性研究[J].甘肃科学学报,2014,26(3):23-27.
[6] JITENDRA K,RIMSHA G,ASHUTOSH K S.Long short term memory recurrent neural network(LSTM-RNN)based workload forecasting model for cloud datacenters[J].Procedia Computer Science,2018,125:676-682.
[7] MA X,TAO Z,WANG Y,et al.Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J].Transportation Research Part C Emerging Technologies,2015,54:187-197.
[8] DUC LE V,CHA S K.Real-time Air Pollution prediction model based on Spatiotemporal Big data
[C].Guangzhou:The International Conference on Big data,IoT,and Cloud Computing(BIC 2018),2018.
[9] 陶晔,杜景林.基于随机森林的长短期记忆网络气温预测[J].计算机工程与设计,2019,40(3):144-150.
[10] 王嵘冰,徐红艳,李波,等.BP神经网络隐含层节点数确定方法研究[J].计算机技术与发展,2018,28(4):31-35.

备注/Memo

备注/Memo:
收稿日期:2020-03-30基金项目:(长安大学中央高校基本科研项目(300102269205,300102269201,300102120201,300102269304); NSFC-新疆联合基金项目(U1703121)[JP]作者简介:(杨耘(1975-),女,副教授,博士,主要从事环境时空变化智能化处理与分析.王彬泽(1999-),男,主要从事地理信息科学研究.
更新日期/Last Update: 2020-07-04